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Abstract  

Differential constants of motion for systems of free gravitating particles in the Newtonian 
frame are first defined and then determined. It is shown that they are all implied by the 
existence of the first integral invariants of Poincar~ known from classical mechanics, or 
by the circulation theorem known from hydrodynamics. It is proved further that the 
restriction to vacuum conditions does not change the set of differential constants of 
motion. Another consequence is that nothing can be inferred from local (in space and 
time) measurements about the displacement, velocity, and orientation of a laboratory in 
free fall relative to a fixed GatJlean frame. 

1. Introduction 

We intend to s tudy one aspect of  the  mot ion  o f  a cont inuum consisting of  
freely gravitating, noncolliding particles moving in accordance with  Newton's  
theory.  Along the world-line o f  any particle surrounded by  others, all in free 
fall, it is possible to speak of  certain quantities, the differential quantities. At 
every event on such a world-line these are functions defined on certain domains 
of  the following arguments: the (proper)  t ime (of  the chosen particle),  the 
functions that  describe space-time and the particles'  mot ion  and their derivatives 
up to  a certain order; all these are calculated at the given event. We t ry  to adopt  
here as general an approach as possible. However, in order to derive meaningful 
results we should consider only those quantities that  are determined by  the 
physical and mathematical  structure of  the system, namely,  the covariant 
quantities. Then, our main purpose is to select out  of  these the differential  
constants o f  mot ion (DCMs). The DCMs are characterized by  the further res- 
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triction of being constant along the histories of all the particles in every con- 
tinuum in every possible (Newtonian) gravitational field. 

Throughout this paper, lower case Latin and Greek and capital Latin indices 
take the ranges (0, 1, 2, 3}, { 1,2, 3}, and {1, 2 . . . .  ,6}, respectively, except 
when stated otherwise. Partial derivatives are sometimes denoted by a diagonal 
stroke (e.g., 3~/3x i= V/i, 3r~l~d A = r~tA). Parentheses and square brackets 
around indices denote the symmetric and the antisymmetric part, respectively. 
3-vectors are denoted by boldface letters (e.g., v), and scalar products of these 
by (a • b). The general summation convention is strictly kept (a letter appearing 
twice, no matter where, as an index of a product should be automatically 
summed). 

In order to find the DCMs it turns out that one has to solve a system of 
homogeneous linear partial differential equations of the first order for a single 
unknown function. This theory is based on the famous Frobenius' integration 
theorem (Flanders, 1963), and the technique of treatment is outlined, for 
example, in Schouten (1954). We shall make use of this technique here. In 
order to describe our operations we found it useful and economical to intro- 
duce the following convention. 

Let F(y) satisfy the equations 

(a) a i ~  F = 0 

(b) bi39~ F = 0 

(Here and in the following the indices i, L • •. run over any finite set.) Then F 
satisfies the following equation (c), obtained from (a).and (b) by means of a 
process which we call "crossing of (a) and (b)": 

(c) is again a homogeneous linear differential equation of the first order: 

ci3~- ~ F = O, c i -~ a]bi/] - biai/] (c) 

We shall write symbolically [a, b] = (c). 

2. Differential Quantities and the Definition o f  a Differential 
Constant o f  Motion (DCM) 

Let x~ be arbitrary Galilean coordinates of space and t = xo the time. Six 
A parameters, (d) =- ( d ) ,  serve to identify all the possible motions, r(t;d), of 

free particles. According to Newton's theory of gravitation 

O2r 
3t 2 = grad ~b (2.t) 
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where $ = $(t, r) is a scalar function (with respect to Galilean transformations), 
which is determined in a given physical system up to gauge transformations 
~b -+ ~b + f(t) ,  where f depends only on the time. At first we assume that ~b is 
arbitrary. The physical inequality Aq~ < 0 (following from AS = -47rp), may 
be assumed. The discussion and the results are insensitive to this assumption. 
Later in Section 4 we assume the vacuum condition AS = 0. 

Differential quantities (along the history of a certain cilosen particle d) are 
constructed out of t and the derivatives of ~b and r. Let us define 

_ ar~ 
v a =  at  ' r~A~" " " A n  =--ra/A1/" " " / A n '  

VaAl""  " A n  = - - V o t / A x ] . . .  /A n, ¢il " ' "  in=~bli~li~/" "" / in  (2.2) 

R is easy to show that apart from the symmetries 

rA  l ' ' '  A n = r ( A t . . . A n . ) ,  V A t . . . A n = V ( A I . . . A n ) ,  

¢ i , . .  "in = ~)(i, . . . in) (2.3} 

the quantities 

{ t ,  r a ,  v a ,  r a A  , V a A  , r a a B ,  Vo~AB , . . . ,  ~), ~)i, ~)i] . . . .  } (2.4) 

are functionally independent; moreover, taking (2.1) into consideration, it 
follows that every derivative of $ and r is a function of the quantities (2A). 
Therefore, the  quanti t ies (2.4)  serve as a basis (in the func t ional  s e n s e ) f o r  the  
(no t  necessarily covariant)  di f ferential  quantities. We shall refer to them later 
as the  basic di f ferential  quanti t ies,  or just the basic quantities. 

In addition to (2.3) there is still another restriction on the basic differential 
quantities which expresses the claim that r(t, d) includes (at least locally) all 
the possible motions of gravitating particles. But this restriction is an inequality; 
therefore it does not further reduce the set of functionally independent basic 
differential quantities. We may write it in the following form: 

% 
(r~) ( v ~ ) )  

det (r~AV~A) -- det . . $ 0 (2.5) 

\ 

where ( r A ) a n d  (VA) stand for the rows with the components raA and V~A , 
respectively. 

The above.mentioned independence of the basic differential quantities 
leads to the following simple classification: A basic quantify of order n 
possesses exactly n indices of type A, B . . . . .  etc. (e.g., t, r~, va, $i~. .  • i k are 
of order zero). We generalize this to other differential quantities: A differential 
quantity is of order n if as a function of the basic quantities, n is the highest 
order of its nontrivial arguments. 
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In accordance with the introduction w e  d e f i n e  the  D C M s  to  be  those  
d i f f e ren t ia l  quan t i t i e s  t h a t  are c o n s t a n t  a long  the  his tor ies  o f  al l  f r e e l y  fa l l ing  
part ic les  in every  p a r a m e t r i z e d  c o n t i n u u m  in every  poss ib le  grav i ta t ional  f i e l d  
and  every  Galilean re ference  f r a m e  and  gauge o f  p o t e n t i a l  ¢. 

The basic quantities (2.4) are not necessarily covariant: They may depend 
on the gauge of ¢ and on the Galilean reference frame. However, we dismiss 
this fact now, hoping we shall be able to characterize the desired covariant 
quantities in the larger set later on. On the other hand this approach may be 
advantageous. After all a choice of  a certain Galflean frame enriches the math- 
ematical-physical structure of  the system. For example, the occurrence, maybe ,  
of  any non-Galilean invariant DCM means that it is possible to learn something 
about the displacement, velocity, and orientation o f  a laboratory associated 
with a particle from local measurements, only (!). 

In order to find the DCMs we should know the time derivatives of  the basic 
quantities along the particles' histories. We denote this kind of  derivative by a 
dot. Making use of  (2.1) and (2.2) we obtain. 

i = 1 (2.6a) 

i ' a &  " " A n  = Vo~A~ . . : A n  (2.619) 

~a = q~ (2.6c) 

~aA = O~#r#A (2.6d) 

bo~AB = ¢ a # T r V A  rf lB + ¢ a 3 r 3 A B  (2.6e) 

G A ,  • • • A n  = Oa#, . • • ~nr#, A ,  " " " r#nA n +" " " + Ca#rt3A, • • • A n  

(n = 3, 4, 5 . . . .  ) (2.6 0 

4 i 1 .  . . in = ~9i1. . . in  0 + ¢ i 1 .  . . inCUr a (n = 0, 1 ,2  . . . .  ) (2.6g) 

where the terms which are not written explicitly in (2.60,  are monomials in 
the arguments {~G#~ • - • #k' r # A ~ . . .  At}k=2 . . . . .  n --1;l=a . . . . .  n - 1 which are 
linear homogeneous (degree 1 exactly) in the {Ca# , . . .  #k} k= 2 . . . . .  n - l- 
In particular, the right-hand side of  (2 .60  is independent of  the 
{ ¢ o q  • • • i k } k = o ,  ~ , 2 ,  3 . . . .  - 

Obviously a function F with arguments from (2.4), (a differential quantity),  
is a DCM if and only if it satisfies (in a certain domain of  its arguments) 

OF + ~ f~aA~ - • • A k  Ov~A1 OF p=_ F + V A1.-.AkOr A1...Ak k--O 3 t  ." " A k  
k=O 

OF 

k= o 0¢i, - - • ik 

in which we have to substitute from (2.6) for the corresponding quantities. 
In the remainder of  this paper we shall find all the solutions of  equation 

(2.7) 
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(2.7). It is a single equation. But with a function F of  a finite number of  
arguments the coefficients in (2.7) contain some of  the basic quantities which 
are not  among the arguments o f F ( ! ) .  Since these are arbitrary in their domains 
it follows that (2.7) in fact decomposes into a system of  equations. 

it. 

3. The DCMs in Newton's Theory with no Restrictions 

We first state and explain the fmal result of  this section; then we shall prove 

Let us define the differential quantities 
N) 

I~AB] = K ( ~  ) - (rA" VB) -- (rB "VA) (3.1) 

[The superscript (N) emphasizes that we are dealing with Newton's  theory.] 
Given any r(t;d), the K(AN B) are functions of  t and d. The same holds for the 
quantities 

K(ANB)I"''Cn -- K(AN)Cl/C:/"'"/Cn (n = 1, 2 , . . . )  (3.2) 

and, clearly, they are also differential quantifies. It  is easy to show (by induc- 
tion) that for a given n the K ( N )  . . c are of  order n + I ,  and as functions 

1 n + 
of  the basic quantities they depend only on the ( r A . . .  A k' VA1 • • • Ak}~= 1. 

The main result of  this section is as follows. Apart from the symmetries 

KA (N, - K  N  n=0 1 "  " " A n -  [ A 1 A 2 ] ( A a "  " " A n ) '  " " 

(n = 2, 3 , . . . )  (3.3) 

the K(A N). . .  An are functionally independent and form a basis for the DCMs in 
Newton's theory with no restrictions. Also, they are all covariant. We shall 
refer to the K ( N ) . .  A n as the basic DCMs. 

In the remainder of  the paragraph we prove this assertion. The proof  
consists o f  four subparagraphs. 

3. t .  A DCM is Never a Function o f  the {ra, v~, ¢, $i, $i] . . . .  }. Assume that 
the highest derivatives of  ¢ occurring among the arguments of  a DCM,/7, are 
of  order K. We prove immediately that F, then, cannot be at all a nontrivial 
function of  the ($i~ •. • iK}, and thus, by induction, F is not at all a function 
of $ and of  its derivatives. To prove that F is independent of  the {$il • • • iK } 
we perform another inductive process. At first we should note that,  although 
F is not  a function of  the {¢i~. . .  iK+ 1} (by assumption) these quantities do 
appear in (2.7) (in the expressions for (VaA~.. - Al} l>~K and ¢i~ •. • iK)" How- 
ever, the ¢i~ -.  • i--+ 1 with one index at least zero, the ¢i~ - - - iKO, appear only 
in the 6i~-- .  i K, ~ a t  is, in the terms 

~F 
( ¢ ~ 1  • • .~Ko + ¢ ~  • - • ~ K , ~ ' c , ) a ¢ i . . .  

i K  

Let us assume by induction that  F is independent of  the ¢i~ • • • iK with at least 
r + 1 (r < K )  indices zero, (the ¢o.  • • Oir+2" • • ig). This is equivalent to the 
equations ~bi~... ix(aF/a¢i~. . ,  ix )  = 0 for.all the constants ~i~ . . .  iK = 
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~(i l  • .  • iK) ,  the nonvanishing components of which possess at least r + 1 indices 
zero. Now, iet us define @~r) . .  tK =- ~i1" • • iKO if exactly r indices among the 
il . . . .  iK vanish and other{vise ~ r . ) . .  i~- -- 0. Then, it is easy to show that the 
¢it .•  - iK+l with exactly r + 1 ind~ces zero appear in (2.7) only in the expression 

~ r ) . .  i K ( O F / a ~  i . . .  iK)" This expression should vanish since (2.7) should 
hold and the ,~,~r).l.. iK obtained, while changing the ¢ i t . - -  iK+I, a r e  arbitrary 
apart from ~}r)... iK = @ l O , . . .  iK)  and ~ r ) . . .  iK = 0 if not exactly r of  the 
il . . . . .  iK are zero, and this, in turn, means that F is also independent of the 
~)i 1 " • • iK with exactly r indices zero. Therefore F is independent of  the ¢it• • - iK 
with at least r indices zero and the inductive process can be continued. This 
completes the proof that F is independent of ¢ and of its derivatives. Neverthe- 
less, derivatives of  q~ still appear in (2.7). In particular ~a appear only in the 
terms ~ a ( ~ F / ~ v ~ )  and their arbitrariness and (2.7) imply ( a F / O v a )  = 0. Then 
the v~ occur in (2.7) only in the term v a ( O F / a r ~ )  and by the same procedure 
OF/ r ) = o, t o o .  

Therefore, among the basic quantities, the {r~, v~, ¢, ¢i, Cq . . . .  } are not 
available for the construction of  DCMs. We shall call 

{ t ,  r~A,  VaA,  r~AB,  V~AB . . . .  } (3.4) 

t h e  available basis,  and refer to its members as the available basic q u a n t i t i e s ,  

and to functions of  these arguments as the available d i f f e r e n t i a l  quant i t i e s .  

3.2 M o d i f i c a t i o n s  o f  t he  available basis ( 3 . 4 ) .  We shall change the available 
basis (3.4) in a way that leaves the available differential quantities unchanged. 
Given rA, v.4 which satisfy (2.5), the {((rA), -- (vA))}~ =~ form a linear basis 
in the space of  6-tuples. Let us consider the nth-order members of the available 
basis, y e a  t . . .  A n ,  r~A ,  • • " An" For given A 1 . . . . .  A n ,  ( v n l  . . . A n ,  r n l  " • " An)  
is an arbi t rary  6-tuple [remember (2.3)]. Therefore, it is fixed by its six 6- 
Cartesian scalar products with the members of  the above-mentioned basis, 

h A A , ' ' "  A n = ( r A ' V A , ' '  " A n ) - - ( V A  "rAt' '  "An) ( A = ~ , ' "  ",6) 
(3.5) 

which are also arbitrary (for given A 1 . . . . .  A 6). We may modify the basis 
(3.4) by replacing vA, . .  • A n ,  r a t  " • ' An by hAA~ . • • An" The modified basis is 

{ t ,  r~A,  V~A,  h A B C ,  hABCD,  " • "} (3.6) 

The quantities appearing in this basis are functionally independent apart from 
the symmetries 

h A t A z ' "  "An=hAl (A2  "" "An) (n = 3 , 4 , . . . )  (3.7) 
-~N+ I Also it is worth noting that the quantities {t, r~A,  V~A} U { h A  t " " "A n fn  =3, 

form a basis for the Nth-order available differential quantities (N= 2, 3 . . . .  ). 
In the forthcoming further modifications of  the basis (3.6) we shall try to 
preserve an analogous property. 
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We now apply I.emma 1 of the Appendix to every h A . . .  An in (3.6), 
replacing it by the pair (h[A~A ~ ]A 3 . . .  An,  h(A~ • • • An) ).  The pair components 
are arbitrary apart from the obvious symmetries and 

h[A1A2]A 3 - . . A n = h [ A I A 2 I ( A 3  . - ' A n )  h [ [ A 1 A 2 I A a ] A 4 . . . A n = O  

(n = 3, 4, 5 . . . .  ) (3.8) 

By an inductive process we may add to each quantity in the basis a term with 
the same symmetry properties which is of a lower order. This we shall do 
presently. 

We first replace every h(A~. • "An), (n = 3, 4, 5 . . . .  ), by 

H A , . . . A n = h ( A a A ~ A J A J  ' '  "/An) (n = 3,4 . . . .  ) (3.9) 

Indeed, H A , . .  • An has the symmetries ofh(A * . . .  An),  

H A l ' "  "An =H(A~" " "An) (3.10) 

and they differ from each other by a quantity of order n-2 at most, as follows 
by induction from (3.9) and (3.5). 

This last symmetry follows from the explicit expression 

K(AN~,A3 = (rA1 " VA2A 3) -- (rA: " VAIA~) + (rAtA ~ " VA~) -- (rA,A3 "VA,) 

implied also by (3.1) and (3.2). Again equations (3.1) and (3.2) imply (by 
induction) that 2h[A1A21A~" " • An is e q u a l  t o  the terms of the highest order, 
(n - 1), in the explicit expression Ii(A N). . .  An, SO that 2h [A, A: I A 3' " • An and 
K(A N)  • "An differ from each other by terms of lower order, as should be. An 
important result of this is [with (3.8) in mind] that apart from (3.3) the 

K(A N)" " " An are arbitrary. 
Thus, the last form of the available basis we shall adopt is 

( t ,  raA, va A, HAB C, K(ANB)c, HABCD, K(ANn)cD, . .  .} (3.11) 

its members are functionally independent apart from the symmetries (3.3) and 
(3.10). Also the quantities ( t ,  raA, VaA)U (HA1 . . . . .  Ak~K(A~ ). A kYk =ln+13 
form a basis for the nth-order available differential quantities (n = 2, 3 . . . .  ). 

3.3. DCMs o f  the  Firs t  Order IF(t, ran,  vm4)] • Equation (2.7) for such a 
function takes the form 

3---t- + vaA + O~r~A  = 0 (3.12) 
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Since the symmetric ~ba~ are arbitrary, (3.12) is equivalent to the system 

(a) O--;-+ V~A = 0 

(b) rosa \ovoid ] 

Now we apply to these equations the crossing process as follows. 
[a, b] = (c), [a, c] = (d) 

Applying (d) to (a) leads to 

aF 
(e) at 0 

Contraction of an appropriate pair of indices in [b, d] leads to 

~ 0  

Therefore, the initial system {(a), (b)} implies and is implied by the system 

(b) 

(d) 

(0 

( aF t 0 

VaA + V~A = 0 

raA \OV~A] -- ~ A - - = 0  

aF 
(e) - -  = 0 

~t 

It is easy to show that this system is closed, (That is, the crossing process does 
not lead to new linearly independent equations). F is not a function of t 
[because of (e)], and it can be any function of the 36 variables (raA, vaA} 
that satisfies (b), (d), and (f). This last system consists of at most 21 (= 6 + 6 + 9) 
linearly independent equations. Indeed there are exactly 21 linearly independent 
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equations since the addition of the extra 15 (= 36 - 21) equations 

ro_4 --r~A =0 (3 equations) 

(3 equations) 

r ~  + V 3 A  = 0 (9 equations) 

to them imples (aF/Or~A) = (i~F/av~A) = 0. This fact is a direct result of all 
these equations since (2.5) holds. [We use (2.5) in the form that r~A ~A = 
V~A ~A = 0 imply ~A = 0.] Therefore, there exist exactly 15 (= 36 - 21), 
functionally independent DCMs of the first order, which serve as the basis for 
the DCMs of the first order. We may choose for them the 15 {/t4ANB ) } defined 
by (3.1). Indeed these are DCMs as implied by (3.1) and (2.6). These are also 
15 functionally independent functions, since it is easy to show with the aid of 
(2.5) that the only solution, XAB = X[&B], of the equations XAB(OK(~B)/arac) = 
XAB(OK(ANB)/av~C) -- 0 (a = 1, 2, 3; C= 1 , . . . ,  6) is the trivial one. 

3.4. DCMs o f  High Orders. The basic available differential quantities are 
given by (3.11). We have to know their time derivatives along the particles' 
histories. Those of t, roA, VaA are given by (2.6). Since the {K~)} are DCMs 
it foUows from the definition (3.2) that the (KIA N) . . An}, too, are DCMs: 

/£(A~ )--- An = 0 (n = 2, 3 . . . .  ) (3.13) 

Now, only the {/2/A . . .  An} are as yet unknown. Equations (3.5) and (2.6) 
lead to 

hA~ A~A~ = ~37r~A~r3A~r~A3 (3.14) 

Therefore.the definition (3.9) implies 

n - - 1  

h A , . . . A n  -= ~ ~ a ,  " . . O ~ k ~ r x ,  . . . o e k A ,  . . . A n  + ~ a ,  . . . o e n r a l A ,  . . . r o ~ n A  n 

k = 3  

(3.15) 

where the ff . . . .  's are certain functions of the { r ~ ,  r~4B, raaBc . . . .  }. 
Let F be a DCM. Assume that as a function of the basic quantities (3.11), 

the' {HA1.. .  An} for some n (n/> 3) occur among its arguments while the 
{HA. • • • Ae}k>n do not. F should satisfy F =  0. From equations (3.13), (3.15), 
and (2.6) it follows that this equation has the form of a linear inhomogeneous 
polynomial in the { ~ a . . .  ~t}. Since, apart from symmetry, the { ~ a . . .  ~t} 
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are arbitrary (and F is not a function of them) it follows that all the monomials 
of this polynomial vanish identically. In particular, with the aid of (3.15), 

OF v [ OP~ 
B-T+ aA ~ Or~A] = O (3.16a) 

~)c,[3r~A = 0 (3.16b) 

( 0F ) = 0  (3.16c) 
dPa~ " • "anr~ AI " • • r a n A n  O H A 1  . . "An 

where the q~a,.., ag are considered as arbitrary symmetric constants. (For 
every set of symmetric constants we get an equation.) [F should satisfy even 
more equations than these (!).] 

It would be convenient to separate the indices of type {a, 3 . . . .  ) from those 
of type {A, B . . . .  ), in order that it be possible to note symmetrization, for 
example, of one type of indices by the appropriate bracket notation. In the 
remainder of this subsection we shall raise all the a-type indices and write 
them as upper indices, without any change of the quantities. (For example, 
r~ - r a A ) .  With this notation equations (3.16) take the form 

OF o~{ OF '~ 
(a) O--;-+VA ~a-~A~} = 0 

OF 
(b) rA ~-~A~) 

~ ~n OHA - An 
(c) r(a. . . r A , )  = 0 

We note that equations (a) and (b) are identical to (a) and (b) of Section 3.3 
and imply therefore 

a [  OF't +v ~[ O F ~ = o  (d) 

[which is the same as (d) of 3.3]. 
We prove now by an inductive process that for every k (k = O, 1 , . . . ,  n) 

( e )  oq . . . .  a k ~ . a k + l  . .  r~n .OH A "An V(A 1 V A k ' A k + l  " An)  

For k = 0 (e) is identical with (e) and is therefore correct. Assume that (e) is 
correct for a certain k (k = 0, 1 . . . . .  n - 1); then we perform [d, e] = (f); 



DIFFERENTIAL CONSTANTS OF M O T I O N - ' '  I 9 0 5  

contraction of ~ = ~k+ 1 at (f) leads to (g); again, contraction of ~ = ~k+2 at (g) 
leads to (h), 

(h) v~-41.. , ak ,~  ,~ ,~k+3. ~n  ( OF ) = 0  
" ~ A k ~ ' A k + l ' A k + 2 " A k + 3  " " A n )  ~ H A I  " " " A n  

and substitution from (h) to (g) leads to (e) for k + 1. Therefore (e) is correct 
for all k = 0, 1 . . . .  , n. We may write (e) in the form 

• ~k~k+l. (-a OF )=o (k=O, . . . ,n  ) 
(e*) v~'l.. "~-4k'-4k+l "'r~ n H(-4t:_. An) 

where in (3F/3H(A . . . .  An)) differentiation is followed by symmetrization 
(there is in fact no other meaning). It is obvious that a changing of the order 
of the {rA ~, VA a} appearing in (e*) always leads to a correct equation. There- 
fore with the aid of (2.5) and the fact that (e*) is correct for every k 
(k = 0 , . . . ,  n), we obtain (aF/aH(A... An)) = 0, or S-4.. .  An(3F/aHA... An) = 
0 for all symmetric constants SA~... An" Since the HA,. . .  An are symmetric, 
too, this means that F cannot be a nontrivial function of the H A ~... An" By 
induction this is correct for every n, (n = 3, 4, 5 . . . .  ). Now we are left with 
equations (a) and (b) only, which are identical with (a) and (b) of Section 3.3. 
and imply that F may depend on the {t, rA a, VA a} only through the K~iNB ). 
This completes the proof of the assertion at the beginning of this section. 

4. The DCMs in Newton's Theory in Vacuum 

Every DCM of Newton's theory with no restrictions is obviously a DCM in 
vacuum. Therefore, the DCMs set in vacuum may be larger than the set of 
DCMs that are good for all the possible gravitational fields. On the other hand, 
the vacuum condition reduces the set of differential quantities, since it intro- 
duces, apart from (2.3), further restrictions on the basis of differential 
quantities (2.4). These are 

¢i, . . .  ikaa = 0 (k = 0, 1 , 2 , . . . )  (4.1) 

Therefore, at least in principle, the restrictions (4.1) may make some of the 
DCMs of Newton's theory with no restrictions trivial. However, what really 
happens is that the vacuum condition does not change the set of  DCMs at all. 
We outline the proof right now. 

Our aim is to show that the {K (N) _4 }~ -,  again, form a basis for the 
~ * 1 " "  " n n = : Z  

DCMs in vacuum. We shall follow the proof of Section 3, but from time to 
time we shall have to overcome the new difficulties caused by the further 
restrictions (4.1). In particular we adopt Section 3.1 almost word for word 
and derive the same result, that is, a DCM cannot be a nontrivial function of 
the {rc~, va, ¢, ¢i, ¢i/. • .}, and, thus, the available basis is again (3.3). Then we 
apply to it the modifications of 3.2 and arrive again at the final modified 
available basis (3.11). Two problems, however, should be discussed in detail. 
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4.1. DCMs o f  the First Order[F(t, raA, v~a)] (Vacuum Case). Equation 
(3.12) now leads to the following system only: 

(b*) =0 

for every symmetric set of constants $~t~ which satisfy the further condition 
~b~a = 0. Equation (b*) is equivalent to 

 aV A] + raA \ o v a l  x* a = o 

for some X. Contraction of a =/3 implies X = -{rTc(aF/Ov~¢ ). Hence, (b*) is 
equivalent to 

Now we perform the following operations: [a, b] = (c); replacing of the indices 
(a,/3) in (c) by (7, 6) and then [b, c] = (d); with the aid of (b) it turns out that 
(d) is equivalent to 

(4  4 8 ) (O0_~_~p~4) ruA ( d * )  + = o 

contraction of a = 3' and 6 = 13 in (d*) leads to r~A(OF/OVt,A) = 0; substitution 
of this equation in (b) finally implies 

(e) r~4 + rOA = 0 

NOw, (a) and (e) are identical with (a) and (b) of Section 3.3 and, as was 
pointed out there, they lead to the result that F may depend on the {t, r~A, V~A ) 
only through the K(AN)B . 

4.2. DCMs o f  High Orders (Vacuum Case). As in Section 3.4 we obtain the 
result that if F is a DCM such that, as a function of the basic quantities (3.11), 
the {HA . .  • An} (n ~ 3) OCCUr among its arguments while the {HA, • • • Ak}t¢>n 

1 

do not, then F satisfies equatmns (3.16) (among others); but now the constants 
{qScq - - • ~k} appearing there are more restricted - by (4.1) also. 

Equations (3.16a) and (3.16b) are identical to (a), (b*) of Section 4.1, and, 
as was shown there, they imply (and are implied by) 
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"[t;---7~ laP~ + rau( a_aF__~_F ] = 0 (b) rA 

Equation (3.16c) takes the form 

rO~An[ ' ~F_ ) - - 0  (c )  ~ a , ' " ~ l  1 . . .  A , ~ / _ / A  . . . A  ~ 

where the {~a~. • • an} are arbitrary symmetric constants that have to satisfy 

( d )  ~ u a ~ -  - - a .  = 0 

In equations (a), (b), (c), (d) we have used the convention of  Section 3.4, that 
is, raising o f  all the a-type indices. 

We apply to equations (a), (b), (c), dismissing for the moment equation (d), 
the following process: [a, c] = (e), [b, e] = (f) 

(0 3:o 
( g , v =  1,2,  3) 

and these equations are equivalent to 

(g.) S U ~ a , u ~ a , " ' a . ~  . . . ~ . )  ~HA, ~-.-A." = 0 

for arbitrary symmetric S uv. Therefore, i f F  satisfies equations (a), (b), and (c) 
with the symmetric constants q~al " ' "an, it also satisfies 

(g) SU(al~b% " ' "an)u~11 " " "~nn (~HA ~ .aF.. An ) = 0  

for arbitrary symmetric constants S u~'. [In fact, (g) and (g*) are identical.] 
This discussion proves the following result: I f F  satisfies (c) for the 

symmetric (~b a~ " " "an} in a certain linear space, then F also satisfies (c) for 
the symmetric {~b a~ " " "an} in a larger linear space, the space spanned linearly 
by the former one and by the set {S u(al ~b%" " "an)g}, where the S uu are 
arbitrary symmetric and the {c,b a~" " " an) are, again, in the former space. 

We now apply this result and Lemma 2 of  the appendix to equations (c) and 
(d). It follows that since F satisfies (c) with the ~al • • - an, which vanish by one 
contraction of  indices [remember (d)] ,  it satisfies (c) also with the {~a~- -- an}, 
which vanish by two contractions, and therefore, again, F satisfies (c) with the 
(~bal •. • an}, which vanish by three contractions, and so on. Thus, finally, F 
satisfies (c) with the symmetric q~a~ • • • an with no more restrictions. The 
situation now is completely the same as in Section 3.4, and the path to the 
desired assertion of  this section is clear. 
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5 .  S o m e  C o n c l u d i n g  R e m a r k s  

We emphasize again that from the point of view of the DCMs there is no 
difference between the general theory of N~wton and the vacuum case of this 
theory. All the DCMs are the { K ( N  ). . . A n } n =  2 defined by (3.1) and (3.2). 

Of course, atl the DCMs are co-~ariant (GalJlei invariant, particularly). Hence, 
there is no way of  determining the displacement, velocity, and orientation 
relative to a fixed Galilean frame, of a given laboratory in free fail from (local) 
measurements of  differential quantities; a fact worthy of attention. 

It is possible to show that the constancy of the K(ANB)def'med by (3.1) along 
the particles' motions is equivalent to the existence of the first integral invariants 
of  Poincare, known from classical mechanics (Goldstein, 1962), and it con- 
stitutes a generalization of  the circulation theorem known from hydrodynamics 
(Landau and Lipshitz, 1959). The existence of any other DCM is implied by 
the K(A N) according to Section 3.4; its values, however, may be independent. 
The main work was to demonstrate that no other DCMs exist. (The other 
integral invariants of  Poincar~ have also a differential formulation, which is 
always a set of DCMs of the first order. These should be functions of  the 

A treatment of the analogous problem in the frame of Einstein's theory 
appears in the paper following this one (Enosh and Kovetz, 1978). 

A p p e n d i x  

L e m m a  1 .  Given any k (k = 3, 4, 5 , . . . ) ,  there exists a linear isomor- 
phism between the linear space 

{ R A 1 .  . . A k : . R A I  . . . A k =  R A ~  (A2''. 'Ak)} 

and the linear space of the pairs 

{ < T A 1 .  . " A k ,  S A I  " " " A k  ) : T A I  " " " A k  = T [ A  1 A z ]  ( A a  " • " A k  ) ,  

T [ A t A ~ A z , ]  A ~ .  . . A k  = O ,  S A i  . . . A k  = S ( A  1 • • " A k ) }  

This isomorphism is given by 

T A  1 . • " A k  = R [ A ,  A z ] A ~  - " " A k ,  S A ,  " " " A k  = R ( A ,  • • " A t e )  

+ 2(k - 1) 
RA1- • -Ak = SA, - . " A k  k T A t ( A 2 - . . A k )  

(Here, the A-type indices may run over any finite set.) 

We omit the proof. 
In order to formulate and prove the next lemma it is convenient to introduce 

the following definition. 

D e f i n i t i o n .  For every (n, r) (n = 0, 1,2 . . . .  ; r = 1 , 2 , . . . ,  [½n] + 1), V ( n ,  r )  

is the linear space of the symmetric quantities ~ba,... an which vanish by r con- 
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tractions o f  indices (if 2r > n, we understand that every ~bal... an vanishes by 
r contractions). To be more exact, 

t {~a l - . .  ~,: %1. . .a ,  = ~( ,1 . . .  a,), Ct*~t*l " " " t*rt*ra2r+l . . . s o  = 0), r<~ [½n] 
v(n, r) - 

~ (¢al-- "a.:~al-- "a.= ~(a~ -- -a.)}, r =  [½n] +1 

The a-type indices may run over any finite set with more than one element; 
our convention is a = 1 . . . . .  N ~> 2. ([½n] means the integer part o f  ½n). Thus, 
for example, V(0, 1) = {~}, the space o f  "scalars"; V(1, 1) = {¢~); II(2, 1) = 
(¢aa: %a = ¢(aa), 0 ~ =  0}; v(2, 2) = {¢aa:Oaa = ¢(=a)}" Also 

V(n, 1 ) C  V(n, 2) C V(n, 3 ) C . - - C  V(n, [½n] +1)  

We are now in a position to formulate 

Lemma 2. For every (n, r), (n = 2, 3, 4 . . . .  ; r = 1 . . . .  [½n] ), 
V(n, r + 1) is spanned linearly by V(n, r) and by the set U(n, r), 
where 

U ( n ,  r )  = { ~)cq . . . a n  : ~)oq . . " a n  = S t* (oq ~ aa " " a n ) t * ,  

st*~ = s ( t*• ,  g,~ . . . a . e V ( n ,  r)} 
f o r n =  1 ,2  . . . .  ; r =  1 . . . . .  [½n] + 1. 

In short, V(n, r + 1) = span( V(n, r), U(n, r)} (n = 2, 3 , . . . ; r  = 1 . . . . .  [½n]) 

[The restrictions on St*v may be written as St*veV(2, 2).] 

Proof At first we observe that span U(n, r) = X(n, r), where 

X(n, r) = (Xu(a, • • • a.)t*: Xuva~.. • ,~. = X(~.,)(a~ -. - a . ) ,  

Xt*o Voa~.. • aneV( n, r) for Po, Vo = 1 ,2  . . . . .  N} 

for n = 1, 2, 3 . . . .  ; r = 1 . . . . .  [½n] + 1. This follows from the facts that every 
Xt*va~ •. • an with the properties mentioned in the definition of  X(n, r) can be 
represented by a finite linear combination o f  terms of  the type Suv$a . . . an ,  
where S#v = S(uv ) and c.ba . . .  ~ e V ( n ,  r) and that X(n, r) is indeed a linear space. 
Hence, it is sufficient tolprove V(n, r + 1) = span( V(n, r), X(n, r)} for n = 
2, 3, 4 . . . .  ; r = 1 . . . . .  [~n]. 

One direction, that V(n, r + 1) D span( V(n, r), X(n, r)), is trivial, since 
V(n, r + 1) D V(n, r) and it is obvious from the definitions V(n, r + 1)DX(n,  r), 
(n = 1 ,2  . . . .  ; r = 1 . . . .  , [½n]). 

The opposite direction, that V(n, r + 1) C span(V(n, r), X(n, r)) is more 
difficult. This we shall prove by two stages as follows. 

Statement 1. For every (n, r) (n = 2, 3 , . . . ;  r = 1 ,2  . . . .  , [½n]), every 
(oa~... aneV(n, r + 1) is (uniquely) decomposable according to 

~ a 1 " "  " a n  = ~ ( c q a a ~ a 3 a 4  " "  " 6 a 2 r _ l a 2 r + l ~ / a 2 r + 1  . . - a n )  + r~, . .  - a .  

where r a , . . ,  aneV(n, r) and ~1/%,+1. . .~neV(n - 2r, 1). 
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P r o o f  Given Sa~ •. - cm we per form r contract ions  o f  indices o n  the desired 
decomposit ion• Then,  the  term,~the origin of  which  is ra~ • • .an, vanishes and  
we ob ta in  by  i nduc t ion  

2 r r ! ( n -  2 r -  1)! (N+ 2 n -  2 r - 2 )  tv 
$ # 1 # 1 " " '  tarDra2r+l"" "an = n ! ( N + 2 n  - 4 r -  2)!! "" ~ / a 2 r + l "  " "° in  

[n! = 1"2 ". " n ; ( 2 n ) ! ! - 2 . 4 . -  . 2 n ; ( 2 n  + 1)!! = 1 . 3 . 5  . . - ( 2 n  + 1 ) ] . T h e r e -  
fore, $ • • • and,  t hen  also r • " • are de termined by  $ • • • by  means of  the 
desired decomposi t ion;  moreover,  this decompos i t ion  exists since $ • • • and 
z" • • thus  def ined have, indeed,  the desired properties.  This is a trivial con- 
sequence o f  the  defini t ions.  

S t a t e m e n t  2. For  every (n,  r)  (n = 2, 3 . . . .  ; r = 1 , 2  . . . . .  [½n],  and  

every $a2r+l " • " a n  E V ( n  - 2r ,  1), 8 ( a t a  ~. . . 8a2 r_  1 a2r+ 1 . . "~Xn) E 

x(n, r). 
P r o o f  Given any  ff • • • E V(n - 2r, 1), we have to show how to find 

Xvva,  • • .  an wi th  the propert ies 

Xl.tva I " " • an = X(#v) (a l  • • "an) (A.1) 

Xtavpt pl " " "prpr~a2r+l " " "an = 0 (A.2)  

which  is a solut ion of  the equa t ion  

XJJ'(al °' "an)~ ~=- {~(ala2~a3o/4 " " " (~a2r- I I~2 r~]~a2r+1 " " "~n) (A3) 
This we do for three  disjoint  cases which exhaust  the possibilities. 

t .  ~ - .  • has no  indices at all (n = 2r). We guess X" " "of  the  type  

Xu~,a~ • • "a2,  = (a~uv~(a ,  ,~ .  • .  ~a2r_  1 a2r)  + b S o ' v ~ a ,  a2 . .  • ~a 2 , - 1  a 2 , ) ) ~  

Then  (by  induc t ion) ,  

[ ( N + 2 r - 2 ) ! ,  ( N + 2 r ) , ,  ] 

X u v ° ~ ° ~ • "  " ° r ° r =  q/ a ( 2 r  1 ) ! I ( N -  2)t! +b(2r + 1)!~t! 6uv 

X.(al  . . a2r) . = ~ [a + b N + 2r] 
• 2r  + 1 J 6(a~a2 " " " 6 a 2 r - l a 2 r )  

Equat ions  (A.1) - (A.3)  t h e n  imply  (for ~ $ 0) 

N + 2r  N +  2r  
a + ( 2 r + l ~ b = O ,  a + ~  b = l  

which  have a un ique  solut ion,  

1 N ( 2 r  + 1) 
a = _ -  b = 

N -  1' ( N  + 2 r ) ( N -  1) 

since N >/2 .  This means,  in part icular ,  tha t  equat ions  (A.1)- (A.3)  admit  a 
solut ion X " " " in  case 1. 
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2. ~b' • " has only one index (n = 2r + 1). We guess X" " "of  the type 

+ ~bvS(z~2r+ 18,~,~. . .  8~2r_1 ~2~)) 

+ b ~ l ,  t l ) ~ ( c ~ l a 2  . . . ~ a 2 r _ l a 2 r ~ l O ~ 2 r + l  ) 

+ C~ (~/,,~al as . . . ~a 2r--i C~ 2 r~Ja2r+l ) 

Then (by induction) 

[ (N + 2r)!! (N+ 2r + 2)t! ] 
Xuvo, o," "pror~ = 2 @(u6v)~ [(2r + 1)!waV!! a + (2r + 3)! !(N + 2)!! e 

_ [ (N+2r)!!  ( N + 2 r + 2 ) ! !  ] 
+ ° u v ~  [(2r + 1)!!N!! b -~ (2r + 3)!!(N + 2)!! e ] 

911 

Equations (A. 1)-(A.2) then imply (for ~a ~ 0, N >i 2) the equations 

N + 2 r + 2  N + 2 r + 2  
a + ( N + 2 ) ( 2 r + 3 ) c = O '  b + ( N + 2 ) ( 2 r + 3 ) e = O  

Equation (A.3) is equivalent to 

N + 2 r -  1 
2a+b+ c = l  

2r 

We Obtain by these equations for c 

N + 2 r -  1 3(N + 2r + 2) ] c 
• 2r (AT + ~ ( ~ r  + 3-)] = I 

It is possible to show that the coefficient of  c in this equation is strictly 
positive f o r N > / 2 ;  hence, a solution for a, b, c does exist, which means that 
equations (A.1)-(A.3) admit a solution X" " " in the second case, too. 

3. ~b •. • has, at least, two indices (n > 2r + 1). We guess ×. • • of the type 

X / ~ u ~ ,  . - - a n  = a ( ~ ( a  I c h • • • ~ a 2 r + l  ~ 2 r + 2  l ] ] a 2 r + 3 "  ' " a n ) / u p  

+ b ( ( ~ ( c q c ~  • - • ( ~ c ~ 2 r + 2 ~ 2 r + 2 ~ / C ~ 2 r + 3 .  • .c~n/z)/a 

+ 6 ( ~ 1 %  " " " 6 a 2 r + l  a 2 r + 2  ~ 2 r + 3  " " " a n V ) ~ u )  

+ d 6 ( u v 6 a ~  " • • ~ O ~ 2 r _ l a 2 r ~ / a 2 r + l  " " " a n )  
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Then (by induct ion)  Xuvol oI • • • prpra2r+l " " " an = I + It  + I I I  + IV, where 

(N  + 2n - 2r  - 4)! !K 
I "a  n!(N + 2n - 4r - 4)!! 8(a2r+l a~r+2 ~kO~2r+a - - "  an)uv 

, ( N + 2 n - 2 r - 2 ) H ~  
II - 2b (n + ~ ( N - + 2 n - - - ~ r r  - ~ ) ! !  [(n - 2r  - 1)8(~2r+1 ~2r+2 ~a2r+3""  "an)uV 

+ ({~u(a2r+l 1~/C~2r+2 . . . an)V + ~v(a2r+ 1 ~a2r+2 • • "an)U)] 

._ . . . .  --_ - -  z)::v, 
I I I  ' Cn,(/N2n2--n_er2--r_ 2)~$!'~ l) SUv~a~r+l .. "c~n 

, + 2) . - ~ ( N  + 2n--£ 4 r )  !! (N + 2n - 2r)!!g [ I v -  2 a ( .  . . .  

(n - 2r ) (n  - 2 r -  1)8(~2r+1 
+ 2 a~r+2 ~ba2r+3 " " " a n ) u v  

1 

+ ( n -  2r)(fu(~2r+ 1 ~2~+2""an)v + 6v(a2~_~ ~a2~+2"" "an)#) l 

where K --= 2r(r + 1)!(n  --  2r)!  It can be shown that  equations (A.1)-(A.2)  are 
satisfied by  the choice 

a = ( N +  2n - 2 r ) (N  + 2n - 2 r -  2) (n  - 2r)(n  - 2r  - t ) d  

( N +  2n - 4r - 2 ) ( N +  2n - 4r ) (n  + 1)(n + 2) 

(iV + 2n - 2r)(n  - 2r) . 2 (N + 2n - 2r ) ( r  + 1) 
b = -  ~-~-+--~n ~- 4 ~ n + - ~  a,  c = - ( N  + 2n - 4r)(n  + 1)(n + 2) d 

and, further,  that  equat ion (A.3) is satisfied, too ,  if  and only if  

d 2(r  + 1 ) ( N +  2n - 2r) 

(n + 1)(n + 2) 

[ ( N + 2 n  - 2 r -  2)(n - 2r)(n - 2r - 1) ( N +  3n - 2r)(n  - 2r) 

x[, ( ~  T n -  4r---2--~A7 + 2 n - - T r ~ n -  (N+2n-4r )n  

N + 2 n - 4 r  t l  = 1  

and this equat ion can be solved for d if and only if the expression in the square 
brackets does not  vanish. This is, indeed, the case for N >~ 2, since this expression 
is equal to 

2r(n - 2r) 2 + 4(N - {)r(n - 2r) + 2r(N-  1)(N - 2) 

(N  + 2n - 4r  - 2 ) ( N  + 2n - 4r)n 
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and is strictly positive, because the three terms in the nominator  are non.  
negative while the denominator and the second term in the nominator are 
strictly positive. Therefore, in case 3, too, equations (A.t)-(A.3)  admit a 
solution X" " " • The proof of statement 2 is, thus, completed. This accomplishes 
the proof of I.emma 2. 
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